Activated Integrin-Linked Kinase Negatively Regulates Muscle Cell Enhancement Factor 2C in C2C12 Cells.

نویسندگان

  • Zhenguo Dong
  • Wei Pan
  • Haiqing Wu
  • Dongjun Liu
  • Ming Cang
چکیده

Our previous study reported that muscle cell enhancement factor 2C (MEF2C) was fully activated after inhibition of the phosphorylation activity of integrin-linked kinase (ILK) in the skeletal muscle cells of goats. It enhanced the binding of promoter or enhancer of transcription factor related to proliferation of muscle cells and then regulated the expression of these genes. In the present investigation, we explored whether ILK activation depended on PI3K to regulate the phosphorylation and transcriptional activity of MEF2C during C2C12 cell proliferation. We inhibited PI3K activity in C2C12 with LY294002 and then found that ILK phosphorylation levels and MEF2C phosphorylation were decreased and that MCK mRNA expression was suppressed significantly. After inhibiting ILK phosphorylation activity with Cpd22 and ILK-shRNA, we found MEF2C phosphorylation activity and MCK mRNA expression were increased extremely significantly. In the presence of Cpd22, PI3K activity inhibition increased MEF2C phosphorylation and MCK mRNA expression indistinctively. We conclude that ILK negatively and independently of PI3K regulated MEF2C phosphorylation activity and MCK mRNA expression in C2C12 cells. The results provide new ideas for the study of classical signaling pathway of PI3K-ILK-related proteins and transcription factors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی اثر کورکومین بر میزان فسفریلاسیون AMPK وACC در سلول‌های ماهیچه‌ای رده C2C12

Introduction: AMP activated protein kinase (AMPK) as key regulators of cell metabolism, plays a major role in the activation of catabolic pathways, such as glucose transport and fatty acid oxidation. Thus, activation of this pathway can be used in the treatment of diabetes and metabolic syndrome. Many studied proposed the effectiveness of the polyphenols present in rhizomes of turmeric (curcumi...

متن کامل

Loss of the 7 Integrin Promotes Extracellular Signal-Regulated Kinase Activation and Altered Vascular Remodeling

Vascular smooth muscle cell (VSMC) proliferation and migration are underlying factors in the development and progression of cardiovascular disease. Studies have shown that altered expression of vascular integrins and extracellular matrix proteins may contribute to the vascular remodeling observed after arterial injury and during disease. We have recently shown that loss of the 7 1 integrin resu...

متن کامل

Loss of the alpha7 integrin promotes extracellular signal-regulated kinase activation and altered vascular remodeling.

Vascular smooth muscle cell (VSMC) proliferation and migration are underlying factors in the development and progression of cardiovascular disease. Studies have shown that altered expression of vascular integrins and extracellular matrix proteins may contribute to the vascular remodeling observed after arterial injury and during disease. We have recently shown that loss of the alpha7beta1 integ...

متن کامل

Blocking c-Met signaling enhances bone morphogenetic protein-2-induced osteoblast differentiation

We previously demonstrated that blocking hepatocyte growth factor (HGF) receptor/c-Met signaling inhibited arthritis and articular bone destruction in mouse models of rheumatoid arthritis (RA). In the present study, we investigated the role of c-Met signaling in osteoblast differentiation using the C2C12 myoblast cell line derived from murine satellite cells and the MC3T3-E1 murine pre-osteobla...

متن کامل

GSK-3 negatively regulates skeletal myotube hypertrophy

Vyas, Dharmesh R., Espen E. Spangenburg, Tsghe W. Abraha, Thomas E. Childs, and Frank W. Booth. GSK-3 negatively regulates skeletal myotube hypertrophy. Am J Physiol Cell Physiol 283: C545–C551, 2002. First published April 3, 2002; 10.1152/ajpcell.00049.2002.—To determine whether changes in glycogen synthase kinase-3 (GSK-3 ) phosphorylation contribute to muscle hypertrophy, we delineated the e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • BioMed research international

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015